

$\overline{D}PP - 2 (KTG)$

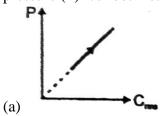
Video Solution on Website:-	https://physicsahol	ics.com/home/cou	urseDetails/57
ideo Solution on YouTube:-	https://youtu.be/60	oH-54BLk88	
/ritten Solution on Website:-	https://physicsaholi	cs.com/note/note	sDetalis/32
	speeds 2 km/sec, 3 km/sec, these molecules (in km/sec		The root
(a) $\sqrt{\frac{27}{2}}$ (b) $\sqrt{2}$	$\overline{7}$ (c) 3.5	(d) $3\sqrt{3}$	
Q 2. At what temperature v 1 km/s? (a) 160°C	will the particles in a sample (b) $222 K$ (c)	e of helium gas have an 160 K (d) 22	
	gas is increased from 27°C t 27°C. The final temperature (b) 250°C (c) 6	re will be	rms speed
	(b) 2.52 × (d) 25.2 ×	tom at -20° C? (atomic 1 10^{3} K	
ratio of rms speed and	of a gas have velocities 1, 2 d average speed is: quares of the first n natural (b) $\sqrt{\frac{(2N+1)}{6N}}$ (d) $2\sqrt{\frac{(2N+1)}{6(N+1)}}$	numbers = $\frac{n(n+1)(2n+1)}{6}$ N	ively. Then
_	nean speed of hydrogen mode containing a mixture of the	e two gases	
(a) 14	$(b) \sqrt{14}$	(c) $\frac{1}{28}$	$(d) \frac{1}{\sqrt{14}}$
Q 7. The mean speed of th	ne molecules of a hydrogen	sample equals the mean	speed of the

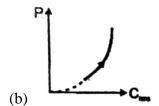
molecules of a helium sample. Calculate the ratio of the temperature of the hydrogen

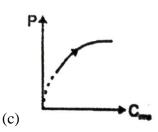
(c) $\frac{1}{4}$

sample to the temperature of the helium sample

(b) 2

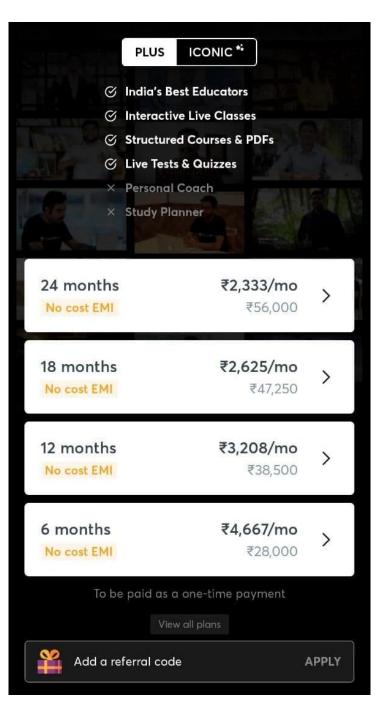

(a) $\frac{1}{2}$




Physicsaholics

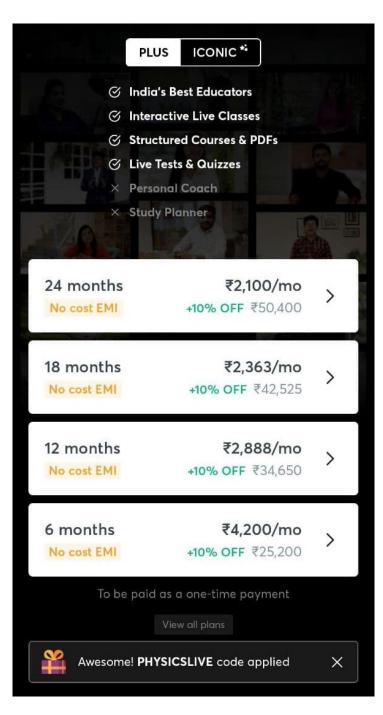
- Q 8. The ratio of rms speed of an ideal gas molecules at pressure p to that at pressure 2p is
 - (a) $\frac{1}{2}$
- (b) 2
- (c) $\frac{1}{\sqrt{2}}$
- (d) $\sqrt{2}$
- Q 9. In a closed rigid container an ideal gas is filled. If the gas is heated, the graph of pressure (P) v/s root mean square speed (rms) will be:

- (d) None of these
- Q 10. A gas is filled in a rigid container at pressure P_0 . If the mass of each molecule is halved keeping the total number of molecules same and their r.m.s speed is doubled then find the new pressure
 - (a) $\sqrt{2}P_0$
- (b) $3P_0$
- (c) $\sqrt{3}P_0$
- (d) $2P_0$
- Q 11. At what temperature most probable speed of SO_2 molecule have the same value as root mean square speed of O_2 molecules at 300 K?
 - (a) 150K
- (b) 600*K*
- (c) 750K
- (d) 900*K*
- Q 12. Most probable velocity, average velocity and root mean square velocity are related as:
 - (a) 1: 1.128: 1.224


(b) 1: 1.128: 1.424

(c) 1: 2.128: 1.224

(d) 1: 1.428: 1.442


Answer Key

Q.1 a	Q.2 c	Q.3 a	Q.4 b	Q.5 d
Q.6 b	Q.7 a	Q.8 c	Q.9 b	Q.10 d
Q.11 d	Q.12 a			

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

NEET & JEE Main Physics DPP- Solution

DPP- 2 Different type of Velocity and speed of gas molecules

By Physicsaholics Team

Solution 1:

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

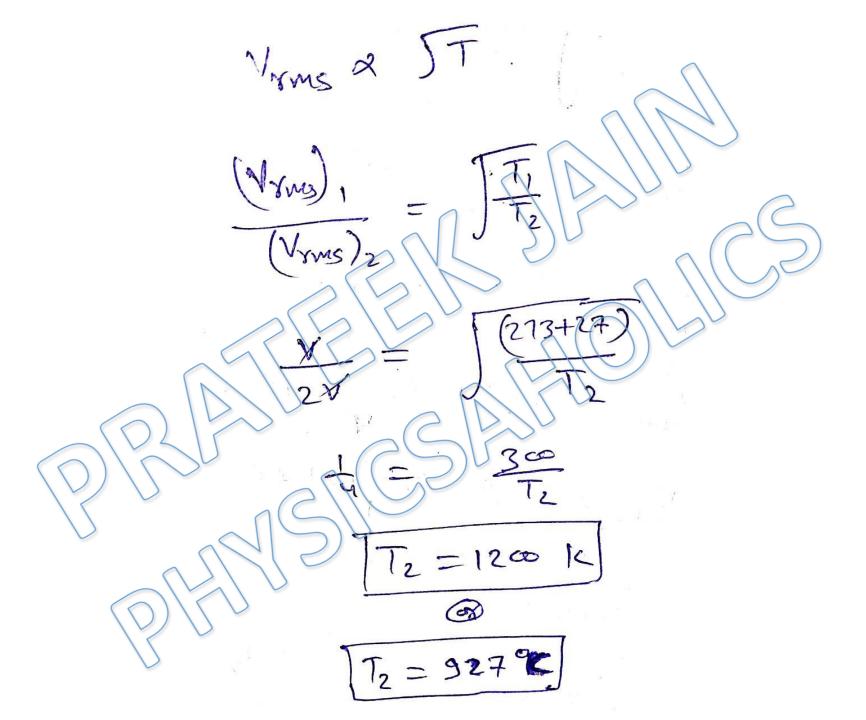
$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

$$V_{rms} = \int \frac{(2)^2 + (3)^2 + (4)^2 + (5)^2}{2}$$

Solution 2:

$$V_{YMS} = \int \frac{3RT}{M}$$

$$M_{He} = 49m \text{ or } 4 \times 10^{3} \text{ kg}$$


$$(10^{3}) = \int \frac{3 \times (8 \cdot 31) \times 7}{4 \times 10^{-2}}$$

$$10^{6} = \frac{3 \times 8 \cdot 31 \times 7}{4 \times 10^{-3}} = 160 \text{ k}$$

$$T = 160 \text{ k}$$

Ans. c

Solution 3:

Solution 4:

$$V_{y} = \int \frac{3RT}{M}$$

$$V_{y} \approx \int \frac{T}{M}$$

$$V_{he} = \int \frac{T}{M} \int \frac{M}{M}$$

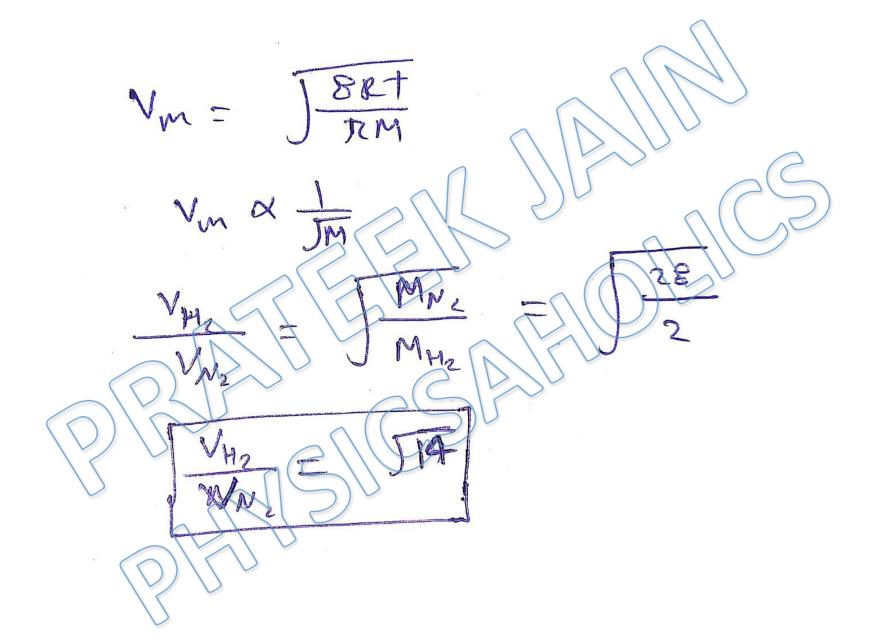
$$V_{he} = \int \frac{T}{M} \int \frac{M}{M}$$

$$V_{he} = \int \frac{T}{M} \int \frac{M}{M} \int$$

Ans. b

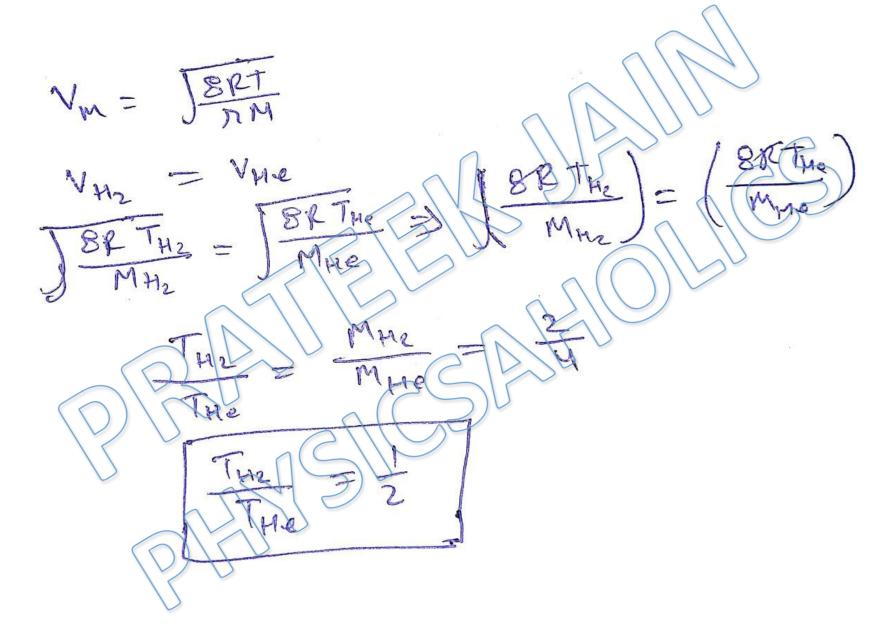
Solution 5:

$$V_{avg} = \frac{1+2+3+4+\cdots+N}{N}$$

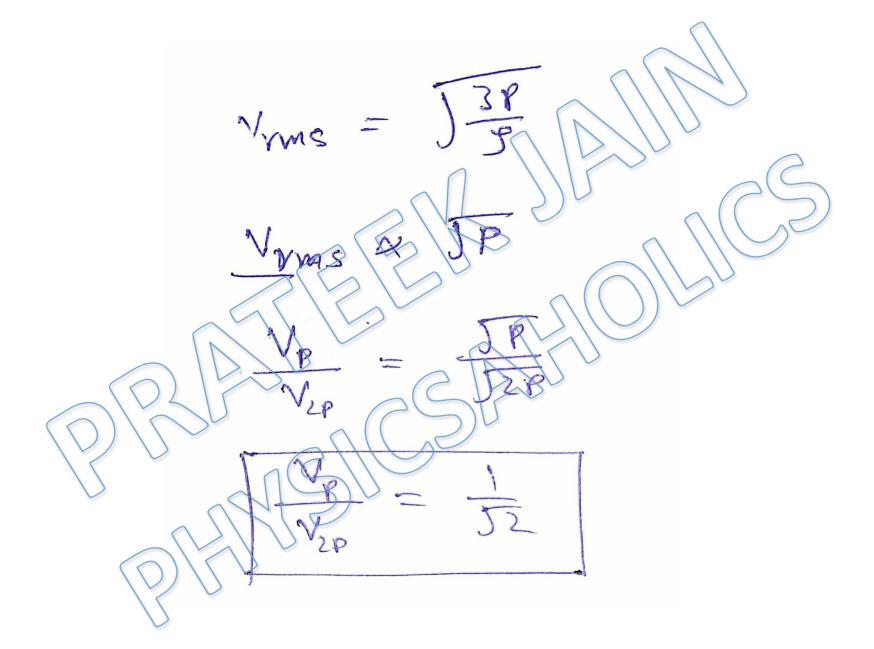

$$= \frac{N(N+1)}{2} \quad (Sum of N-Notheral)$$

$$V_{avg} = \frac{N(N+1)}{2} \quad (Sum of N-Notheral)$$

$$V$$

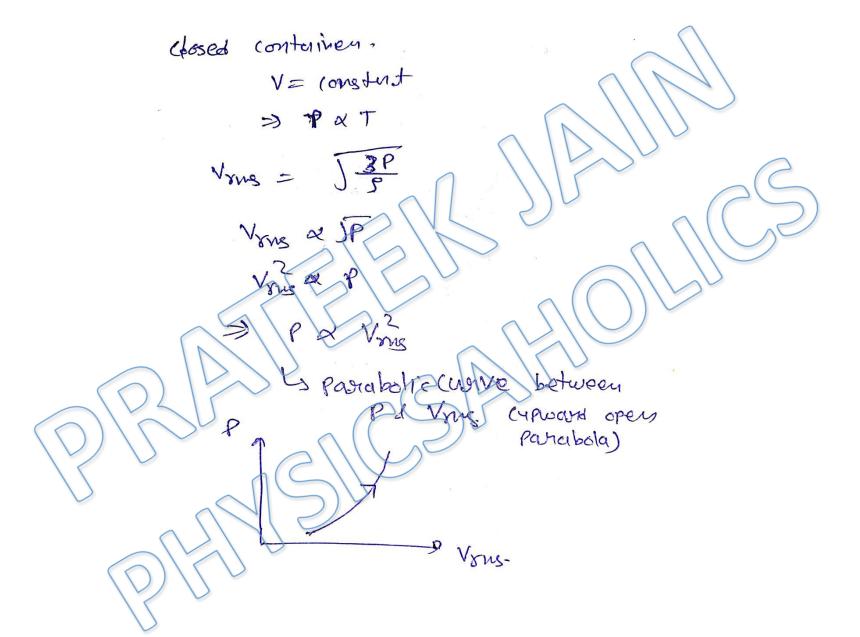

Ans. d

Solution 6:



Ans. b

Solution 7:



Solution 8:

Ans. c

Solution 9:

Ans. b

Solution 10:

Very =
$$\int \frac{3\ell}{5}$$
 $S = \frac{74}{V}$

when mass of each melocular

is holized

then total mass = ml my

 $S^1 = \frac{\sqrt{3}}{2V} = \frac{4}{2}$
 $S^2 = 2 V_{818}$
 $S^3 = 2 V_{818}$
 $S^4 = 4 \frac{3}{5}$
 $S^6 = \frac{13\ell}{5}$
 $S^6 = \frac{13$

Ans. d

Solution 11:

Most Probable speed = JZRT Yout Mean square speed = 34300

Ans. d

Solution 12:

most the bable speed =
$$V_{M} = \int_{M}^{2RT}$$

avgerage velocity = $V_{a} = \int_{RM}^{2RT}$

pms velocity = $V_{rms} = \int_{RM}^{2RT}$
 V_{M} : V_{a} : $V_{rms} = \int_{R}^{2RT} \int$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/57

Video Solution on YouTube:-

https://youtu.be/6oH-54BLk88

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/32

@Physicsaholics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS